Conservative P1 Conforming and Nonconforming Galerkin FEMs: Effective Flux Evaluation via a Nonmixed Method Approach

نویسندگان

  • So-Hsiang Chou
  • Shengrong Tang
چکیده

Given a P1 conforming or nonconforming Galerkin finite element method (GFEM) solution ph, which approximates the exact solution p of the diffusion-reaction equation −∇ · K∇p+ αp = f with full tensor variable coefficient K, we evaluate the approximate flux uh to the exact flux u = −K∇p by a simple but physically intuitive formula over each finite element. The flux is sought in the continuous (in normal component) or the discontinuous Raviart–Thomas space. A systematic way of deriving such a formula is introduced. This direct method retains local conservation property at the element level, typical of mixed methods (finite element or finite volume type), but avoids solving an indefinite linear system. In short, the present method retains the best of the GFEM and the mixed method but without their shortcomings. Thus we view our method as a conservative GFEM and demonstrate its equivalence to a certain mixed finite volume box method. The equivalence theorems explain how the pressure can decouple basically cost free from the mixed formulation. The accuracy in the flux is of first order in the H(div; Ω) norm. Numerical results are provided to support the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation

We derive a posteriori error estimates for the discretization of the heat equation in a unified and fully discrete setting comprising the discontinuous Galerkin, finite volume, mixed finite element, and conforming and nonconforming finite element methods in space and the backward Euler scheme in time. Our estimates are based on a H-conforming reconstruction of the potential, continuous and piec...

متن کامل

Local flux conservative numerical methods for the second order elliptic equations

A discontinuous Galerkin type nonconforming element method and a local flux matching nonconforming element method for the second order elliptic boundary value problems are presented. Both of these methods enjoy the local flux conservation property. The local flux matching method finds a numerical solution in the same solution space of the DG type nonconforming element method, but it achieves mu...

متن کامل

A unified framework for a posteriori error estimation for the Stokes problem

In this paper, a unified framework for a posteriori error estimation for the Stokes problem is developed. It is based on [H 0 (Ω)] -conforming velocity reconstruction and H(div, Ω)-conforming, locally conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as well as local lower bounds on the energy error. In order to apply this framework to a given ...

متن کامل

Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations

We present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by the mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with ...

متن کامل

Analysis of an hp-Nonconforming Discontinuous Galerkin Spectral Element Method for Wave Propagation

We analyze the consistency, stability, and convergence of an hp discontinuous Galerkin spectral element method of Kopriva [J. Comput. Phys., 128 (1996), pp. 475–488] and Kopriva, Woodruff, and Hussaini [Internat. J. Numer. Methods Engrg., 53 (2002), pp. 105–122]. The analysis is carried out simultaneously for acoustic, elastic, coupled elastic-acoustic, and electromagnetic wave propagation. Our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000